|
线性方程组的数值解法 1.1 注册机
线性方程组的数值解法 1.1 注册机
在自然科学与工程技术中,很多问题的解决常常归结为解线性方程组,如电学中的网络问题,船体数学放样中的建立三次样条函数问题,机械和建筑结构的设计和计算等等。因此,如何利用电子计算机这一强有力的计算工具去求解线性方程组,是一个非常重要的问题。线性方程组的解法分直接(解)法{是指在没有舍入误差的假设下,经过有限步运算即可求得方程组的精确解的方法。}和迭代(解)法{是用某种极限过程去逐步逼近线性方程组精确解的方法,即是从一个初始向量x0出发,按照一定的迭代格式产生一个向量序列xk,使其收敛到方程组A*x=b的解}。本软件就是针对线性方程组求解而设计的,内容包括:线性方程组的直接解法:Gauss消去法、Gauss列主元消去法、Gauss全主元消去法、列主元消去法应用『列主元求逆矩阵、列主元求行列式、矩阵的三角分解』、LU分解法、平方根法、改进的平方根法、追赶法(解三对角)、列主元三角分解法;线性方程组的迭代解法:雅可比迭代法、高斯-塞德尔迭代法、逐次超松驰迭代法;迭代法的收敛性『正定矩阵判断、向量范数、矩阵范数、严格对角站优矩阵判断』。软件采用了友好的输入输出方案允许用户按照一定格式输入的随意性,格式详见帮助文档。
|
|